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ABSTRACT : The description of NTRU cryptosystem is entirely given in terms of quotient rings of integer
polynomials. The L3 algorithm guarantees that the first vector of the reduced basis is within a factor of the
length of the shortest vector in the lattice. If one has a lattice where the second shortest vector is more then the
first factor times as long as the shortest vector then the L3 algorithm must return the shortest vector.
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INTRODUCTION
The first version of the NTRU cryptosystem was

proposed by Hoffstein [7] in 1996. The basic collection of
objects used by the NTRU Public Key Cryptosystem is the
ring R. A full implementation of the NTRU Public Key
Cryptosystem is specified by a number of parameters.
However, for the purposes of this overview we’ll concentrate
on the three most important:

N the polynomials in the truncated polynomial ring
have degree N-1.

q large modulus: usually, the coefficients of the
truncated polynomials will be reduced mod q.

p small modulus. As the final step in decryption, the
coefficients of the message are reduced mod p.

To ensure security, it is essential that p and q have no
common factors. The following table gives some possible
values for NTRU parameters at various security levels.

N q p

Moderate Security 167 128 3

Standard Security 251 128 3

High Security 347 128 3

Highest Security 503 256 3

These values are provided to give us some idea of the
quantities used in commercial applications.

All computations are performed in the Ring R = Zq[x]/
(xn – 1), where Zq denotes the integers modulo q. This has
the practical advantage that an element a0 + a1x +...+
an –1 xn – 1 of R  can be represented as an n-tuple of
integers [a0, a1,...,an-1]. Using this representation, addition
in R is performed componentwise, and multiplication (which
we will denote by ∗ ) is a circular convolution :

a*b =

1

0
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n
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It is difficult to find a Minkowski reduced basis for a
lattice. For small dimension this is tractable problem in NTRU.
An approximation algorithm finds a reasonable reduced basis
in polynomial time.

KEY GENERATION

Let L ( ),
def

a b  {f ∈ R|f has a coeffs. equal to 1, b

coeffs. equal to – 1 and all other coeffs. equal to 0}

Let df be an integer less than n/2. Then the private key
f is a random element of L(df, df – 1). For reasons that will
soon be clear, we also require that f be invertible in R, i.e.,
f ∈ R*, and that f be invertible when considered modulo

def
p 3.

Similarly, let dg be an integer less than n/2 and randomly

choose g R L(dg, dg). The public key will be
def

h f – 1 * g.
The security of the crypotosystem will rely on the
assumption that it is infeasible, given h = f – 1 * g, to find a
f′ ∈ R× and g′ ∈ R  satisfying h = f′ – 1 g′.

The following algorithm computes an L3 reduced basis
for L = BZn within polynomially many iterations.

L3
1,..., mb b

→ → 
 
 

Compute the Gram-Schmidt orthogonal basis * *
1 ,..., mb b

→ →
;

Bi =

2

*
mb

→
;
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k = 2;

WHILE k < m DO

IF , 1
1

2k k −µ >  THEN SIZEREDUCE (k);

IF

2 2

* * *
, 1 1 1

3

4

r r r

k k k k kb b b− − −+ µ <  THEN

SWAP (k);

IF k > 2 THEN k = k – 1;

ELSE

k = k + 1;

END IF

END WHILE

END L3

ENCRYPTION/DECRYPTION

To encrypt a message m
1 1

,...,
2 2

n
p p− − ∈ − 

 
⊆ R, we

randomly choose φ R L(dφ, dφ),  and compute the ciphertext :

c = p.(φ*h) + m

To decrypt the ciphertext, we first compute

f * c = p.(φ * g) + f * m

We have chosen the parameters df, dg, df and dm such
that, with high probability, the coefficients of p.(φ * g) + f
* m (mod xn – 1) are between – q/2 and q/2 (before
reducing modulo q). In this case, if we “center” f * c =
p.(φ * g) + f * m (mod q), by choosing its coefficients
between – q/2 and q/2, and then reduce modulo p we
obtain f * m (mod p), with only a small probability of error.
We can recall that f was required to be invertible in Zp[x]/

(xn – 1), and call this inverse 1
pf − . Finally, if we apply

1
pf −  and take the result modulo p, we obtain m (mod p),

and since all coefficients of m are in
1 1

,...,
2 2

p p− − − 
 

,

this allows us to recover m.

In the above decryption procedure, we assumed that
df, dg and df were such that the coefficients of p.(φ * g) +
fm (mod xn-1) are between – q/2 and q/2 with high
probability. While it is possible to find appropriate of df,
dg, df and dm using elementary methods from probability
theory.

CRYPTOGRAPHY
We consider p . h as a linear map (i.e., an n × n matrix

over Zq) acting on f considered as an n-dimensional vector

in {– 1, 0, 1}n ⊆ n
qZ , then the encryption process can be

thought of as perturbing the “lattice point” (p.h) * φ by m.
Thus, given a ciphertext c, the “closest” point to c of the
form (p.h), is likely to be at a distance m from the ciphertext.
However, the attacks we shall consider are to recover a
decryption key f′ given the public key h and consider a
different, albeit related lattice construction [2].

Let H ∈ n n
qZ ×  be the matrix corresponding to the linear

map a |→ h * a in R, and note that H = F –1 G where F and

G are the linear maps a |→ f * a, respectively. Now consider

the 2n-dimensinal Coppersmith-Shamir lattice, LCS, and

a |→ g * a  generated by the columns of

L
0CS Idef

H qI
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Let u


 = f′ O g′ be a shortest vector in LCS and let

σ ∈ Sn be the cyclic permutation [a1, a2 ,..., an] |→  [an,

a1,..., an – 1]. It is not hard to see, from the cyclic structure
of LCS, that

σk (f ′) O σk (g′) ∈ LCS for all 0 < k < n, and that all
these vectors have the same norm. This is the situation we

wish to avoid, however, since this means that
2

1

λ
λ  = 1.

Therefore, we consider the lattice generated by the following
variant of LCS

( )
def

L′ θ
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Lr(θ) is obtained by taking LCS and then multiplying

rows n + 1 though n + r by 1
def

qθ + . This has the effect

of lengthening all vectors whose n + 1 through n + r
coefficients are not all zero. The hope is that g′ will have a
unique “run” of r zeros, i.e., that there is exactly one index

i ∈ [1, 2,..., n] such that ig′ = 1ig +′  = ... = 1i rg + −′ = 0. If this

is the case, then all of the rotations σk (f ′)o σk (g′) will be
lengthened to have length at least

22 1 ( 1) 2f gd q d r− + + + − , except for one of them

which will still have length 2 1 2f gd d− + .

AN IMPORTANT THEOREM

Statement. Let f o g  2n
qZ  denote the concatenation

of f and g as vectors in n
qZ . Then f o g  LCS Zn.

Proof. We consider f and g as a vectors in
{0,..., q – 1}n. Similarly, consider the linear map H : R → R

defined by a |→ h * a. H can be thought of as a matrix in

n n
qZ × , or equivalently as a matrix with entries in

{0, ..., q – 1}. Then Hf = g + q v


, where v


∈ Zn. Therefore,

we have that C(f + (– u


)) = f o g is in LCS = LCSZn.

From the above theorem, the general method of attach
should be clear.

Since f and g are small coefficients by construction, we
expect f o g  to be a short vector in the lattice LCS. Indeed,
this attack, introduced by Coppersmith and Shamir, was the
first main attack against the earliest version of NTRU. In
light of this attack, the security parameters (n, df, dg, dφ)
were adjusted, a part of the justification of the security of
the NTRU cryptosystem is that the parameters were chosen
to make such an attack infeasible using contemporary lattice
reduction techniques.

RESULTS
In NTRU cryptosystem the L3 algorithm guarantees that

the first vector of the reduced basis is within a factor of
1

22
n−

of the length of the shortest vector in the lattice.

Therefore, if one has a lattice where the second shortest

vector is more than
1

22
n−

 times as long as the shortest

vector, then the L3 algorithm must return the shortest vector.

This case is rather extreme since
1

22
n−

 is very large, even

for moderate values of n. However, a similar effect is

noticeable for more reasonable lattices. If we denote by λ1

the length of the shortest non-zero lattice vector, call it v


,

then empirically, the quality of the basis returned by lattice
reduction algorithms appears to improve as the quantity λ2/λ1
gets larger. Therefore, one might try to artificially augment
the “gap” between the shortest vector and the second
shortest vector is order to obtain shorter vector via lattice
reduction.

CONCLUSION AND FUTURE TRENDS
More recently, NTRU cryptosystems have proposed a

new variant where p is actually chosen to be a small
polynomial that is relatively prime to xn – 1 (instead of a
small integer relatively prime to q). This requires several
other modifications to the encryption and decryption
procedures, but much of the structure is the same. The result
shows that the shortest vector in a lattice cannot be
approximated within the factor of v2, whereas the L3

algorithm only guarantees an exponentially large
approximation factor. Some bounds leave open the question
of whether a polynomial approximation to the shortest vector
can achieved in polynomial time, and if so, how shall the
degree of the approximation factor can be. The resilience of
the current version of the NTRU cryptosystem and the
theoretical significance of results such as the Ajtai-Dwork
security proof and Micciancio’s inapproximability result offer
hope that the intractability of lattice reduction may ultimately
provide alternative to the assumptions that integer
factorization and the discrete logarithm problem are
intractable.

REFERENCES
[1] Henri Cohen. A Course in Computational Algebraic

Number Theory. Springer, (1993).

[2] B. Chor and R.L. Rivest. A knapsack-type public-
key cryptosystem based on arithmetic in finite fields.
IEEE Transactions on Information Theory, 5(34): 901-
909(1988).

[3] A .  S h a m i r  D .  C o p p e r s m i t h .  L a t t i c e  a t t a c k s  o n NTRU.
In Proceedings Eurocrypt’ 97, volume LNCS, pages
52-61. Springer-Verlag, (1997).

[4] Cynthia Dwork, Stanford university cs359: Lattices
and their applications to cryptography and
cryptanalysis (lecture notes: http://
theory.stanford.edu/csilvers/cs359/).

[5] T. ElGamal. A  public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, IT 30(4): 469-
72July(1985).

[6] Oded Goldreich and Shafi Goldwasser. On the limits
of non-approximability of lattice problems. Electronic



Lal, Yadav and Bhardwaj 59

Colloquium on Computational Complexity (ECCC),
4(031): (1997).

[7] Jeffrey Hoffstein, Jill Pipher, and Joseph H.
Silverman. NTRU: A ring-based public key
cryptosystem. In Algorithmic Number Theory, pages
267-288(1998).

[8] Jeffrey Hoffstein, Jill Pipher, and Joseph H.
Silverman. http://www.ntru.com.

[9] Antoine Joux and Jacques Stern. Lattice reduction:
A toolbox for the cryptanalyst. Journal of
Cryptology: the journal of the International
Association for Cryptologic Research, 11(3):
161-185 Summer (1998).

[10] A. May. Cryptanalysis of NTRU, (1999).

[11] Daniele Micciancio. The shortest vector in a lattice
is hard to approximate to within some constant. In
IEEE Symposium on Foundations of Computer
Science, pages 92-98(1998).

[12] Alexander May and Joseph H. Silverman. Dimension
reduction methods for convolution modular lattices.
In CALC, pages 110-125(2001).

[13] Phong Nguyen and Jacques Stern. Cryptanalysis of
the Ajtai-Dwork Cryptosystem. In CRYPTO, pages
223-242(1998).

http://www.ntru.com

